

Test Report

Report No.: 890653-2-AB

Gregersensvej DK 2630 Taastrup Tel. +45 72 20 20 00 Fax +45 72 20 20 19

info@teknologisk.dk www.teknologisk.dk

Assignor:	Normann Copenhagen ApS Østerbrogade 70 2100 Copenhagen Denmark		Page 1 of 1 Hbk/jle Order no.: 890653 No. of appendices: 4				
Material:	HYG 2-seater sofa, with oak legs and	d Camira fabric, mainline	flax.				
Sampling:	The test material was sampled by the assignor and received in cardboard at the Danish Technological Institute 2020-03-19.						
Method:	ANSI/BIFMA M7.1-2011 (R2016) – Standard test method for determining VOC emissions from office furniture systems, components and seating.						
	Details of test methods are shown in	appendix 2.					
Period:	The chamber testing was carried out from 2020-03-24 to 2020-03-31.						
Result:	The estimated building concentrations (C _{bldg}) of the tested furniture and limit of indo air concentrations after 7 days (168 hours) are shown in the following table:						
		Tested Seating	Emissions Limits*				

Tested Seating C _{bldg}	Emissions Limits* Seating C _{bldg}
0.20	≤ 0.25
1.3	≤ 25
2.2	≤ 50
< 0.001	≤ 0.00325
	Cbldg 0.20 1.3 2.2

* ANSI/BIFMA M7.1 Table A1.1.

Detailed results for emissions are shown in Appendix 3. Estimated building concentrations are shown in Appendix 4. The estimated building concentrations are below the allowable limits; hence the tested furniture is low-emitting according to LEED v4 for Interior Design and Construction, January 5, 2018.

Note: The test results does not apply to furniture with other materials than the tested sample, such as plywood legs or leather covers.

Storage: The test material will be picked up by the assignor after testing unless otherwise agreed.

- Terms:Accredited testing was carried out in compliance with international requirements (EN/ISO/IEC 17025:2005)
and in compliance with Danish Technological Institute's General Terms and Conditions regarding
Commissioned Work accepted by Danish Technological Institute. The test results apply to the tested
products only. This report may be quoted in extract only if the laboratory has granted its written consent.
- Date/place: 2020-05-15, Danish Technological Institute, Taastrup, Building and Construction

Digitally signed by: Helene Bendstrup Klinke Ph.-Direct: +45 72202173 E-mail: hbk@teknologisk.dk *Digitally signed by:* Johan Stefan Leitet Ph.-Direct: +45 72201292 E-mail: jle@teknologisk.dk

Signature:

Test responsible

Co-signatory

Report no.: Appendix: Page: Initials:

890653-2-AB

2

DANISH TECHNOLOGICAL

0036 Taestriap +45 72 20 20 00

1 1 of 4 Hbk/jle

Material information given by assignor:

Chain of Custody form (CoC) ANSI BIFMA / CDPH 01350

iils	
Normann Copenhagen ApS	
Østerbrogade 70, 2100 Copenhagen	
Denmark	
Søren Stryhn-Petersen	
СТО	
+45 22844421	
ssp@normann-copenhagen.com	
	Normann Copenhagen ApS Østerbrogade 70, 2100 Copenhagen Denmark Søren Stryhn-Petersen CTO +45 22844421

Sample details	
Sample ID	HYG 2-seater sofa, with oak legs and Camira fabric, mainline flax
Product category	Sofas and lounge chairs
Product name	HYG & Era series - sofas and lounge chairs
Manufacturers ID. no.	
Date manufactured	March 12th. 2020
Sample collection location	
Samples collection time and date	
Sample collected by	
Number of sample pieces	1 pc. HYG Sofa
Disposal of sample material after test:	□Scrap/discard Storage and pick-up

Shipping details		
Packed by	Søren Stryhn-Petersen	
Shipping date	March 12 th 2020	
Carrier	Søren Stryhn-Petersen	
Air bill number	Road delivery	

IMPORTANT:

Please wrap samples in airtight plastic in protective cardboard box/pallet and enclose this chain of custody form.

Please send the sample to: Danish Technological Institute Gregersensvej, Port 3K DK-2630 Taastrup Attn. Helene Bendstrup Klinke - Phone + 4572202173

Send electronic copy of test order form to: E-lab@dti.dk

Test laboratory	1	
Reception date & initials	20200319/MHON	
Laboratory ID	890653-2	

Report no.: Appendix: Page: Initials: 890653-2-AB 1 2 of 4 Hbk/jle

Additional information given by assignor:

normann

COPENHAGEN

Appendix 1 – ANSI BIFMA/CDPH 01350

April ^{23rd}. 2020

Test sample information:

Test sample ID: HYG sofa in full upholstery with solid oak legs Seat material: Fabric is Camira – Mainline Flax). Rigid foam shell with steel frame, Foam cushion HR foam 60H (000023) Leg materials: Solid oak wood, with clear lacquer Glides: Made in HDPE

The test sample represents the following furniture with the following materials:

- 1) HYG lounge series Sofa and lounge chairs tall and low
- 2) ERA lounge series Sofa and lounge chairs tall and low
- 3) SUM lounge series Sofa modules and lounge chair

The HYG series comes in following versions.

HYG sofa

HYG Lounge chairs Tall and low

Report no.: Appendix: Page: Initials:

890653-2-AB 1 3 of 4 Hbk/jle

HYG Lounge series can be delivered with legs made of

- Solid oak wood with clear lacquer or painted Swivel legs in aluminium ٠
- •

The ERA series comes in following versions.

ERA sofas.

ERA lounge chairs:

Report no.: Appendix: Page: Initials: 890653-2-AB 1 4 of 4 Hbk/jle

ERA sofa and lounge chairs can be delivered with legs made of:

- Plywood
- Steel with Chrome
- Steel with powder coating
- Rocking steel legs with chrome
- Aluminum swivel (only lounge chairs)

The SUM series comes as a lounge chair or sofa in modules

SUM lounge chair

SUM sofa modules

SUM lounge chair and sofa modules will be delivered with aluminum legs.

All HYG, ERA and SUM sofas and lounge chairs will be delivered as upholstery version. The upholstery version will consist of following materials:

- PUR foam shell
- Fabric: Camira Main line flax, ERA, Oxygen, Synergy, ZAP, Oceanic, Yoredale, Zap, and Aquarius. Gabriel – Fame, Fame Hybrid, Breeze Fusion. Kvadrat – Hallingdal, Steelcut Trio and Remix.
- Leather: Sørensen leather Ultra and Victory
- Low emission HR foam

Report no.: Appendix: Page: Initials: 890653-2-AB 3 1 of 4 Hbk/jle

Chamber testing:

The test material was unwrapped and placed in the chamber.

Photo of test material in the chamber:

Climate chamber Temperature Relative humidity Air velocity at the surface of the specimen Air change rate (n) Area change flow rate 24 m³ Polished stainless steel 23°C \pm 1°C 50% RH \pm 5% RH 0.1 – 0.3 m/s 0.52 h⁻¹ \pm 0.05 h⁻¹ 12.4 m³/h

The test material was tested in the emission chamber without prior conditioning.

Air samples were taken from the climate chamber outlet air with calibrated pumps according to ISO 16000-6 on Tenax tubes (3-4 L) and ISO 16000-3 on DNPH tubes (60 L)

890653-2-AB 3 2 of 4 Hbk/jle

The concentration approach was applied for emission testing.

The measured chamber concentrations are shown in Tables 1 and 2.

Results from the VOC analysis are shown in Table 1.

Method: ISO 16000-6: 2011. Indoor air – Part 6: Determination of volatile organic compounds in indoor and test chamber air by active sampling on Tenax TA sorbent, thermal desorption and gas chromatography using MS/FID.

Analysis of the air sampled on Tenax was performed at the Wilhelm Klauditz Institut (WKI) under DAkkS accreditation number D-PL-11140-05-02. Report no. MAIC-2020-1268.

Table 1: Emission of volatile organic compounds (VOCs) between n-C6 and n-C16 measured by GC-MS $(\mu g/m^3)^*$

	7	2 hrs	(3 days		168 hrs (7 da		(7 day	
Chemical class/compound name	#1	#2	Mean	% diff	#1	#2	Mean	% diff
Aromatic hydrocarbons								
Toluene	2	< 2	1	>100	2	< 2	1	>100
m,p-Xylene (m-Xylene)	4	4	4	0	2	2	2	0
Styrene	45	41	43	9	27	29	28	7
o-Xylene (m-Xylene)	3	3	3	0	< 2	2	1	>100
Alkylbenzene (Toluene)	3	3	3	0	< 2	< 2	0	0
Alkylbenzene (Toluene)	7	6	7	15	3	4	4	29
Alkylbenzene (Toluene)	11	10	11	10	4	5	5	22
Alkylbenzene (Toluene)	12	12	12	0	6	7	7	15
Alkylbenzene (Toluene)	5	4	5	22	3	3	3	0
Aliphatic hydrocarbons								
Cyclohexane	9	8	9	12	5	5	5	0
saturated aliphatic hydrocarbons C9-C16								
(Toluene)	100	91	96	9	55	58	57	5
saturated aliphatic hydrocarbons C9-C16	10	10	17	10	0	10	10	
(Toluene)	18	16	17	12	9	10	10	11
saturated aliphatic hydrocarbons C9-C16	5	5	5	0	3	3	3	0
saturated aliphatic hydrocarbons C9-C16				Ű	0			•
(Toluene)	4	4	4	0	2	3	3	40
saturated aliphatic hydrocarbons C9-C16								
(Toluene)	6	5	6	18	4	4	4	0
saturated aliphatic hydrocarbons C9-C16	2	< 2	1	>100	< 2	< 2	0	0
(Toluene) Cycloalkanes	< 2	< 2	< 2	0	< 2	< 2	< 2	0
Terpenes	~ 2	~ 2	~ 2	0	< Z	<u> </u>	~ 2	0
alpha-Pinene	2	2	2	0	< 2	< 2	0	0
Terpene (Toluene)	5	4	5	22	4	5	5	22
Terpene (Toluene)	5	4 5	5	0	4	4	4	22
	5	5	5		3	4	-	
Longifolene Alcohols	5	5	5	0	3	4	4	29
	120	115	110	4	F.0	60		10
Diacetone alcohol	120	115	118	4	50	60	55	18
Glycols/Glycol ethers	< 2	< 2	< 2	0	< 2	< 2	< 2	0
Aldehydes		-						
n-Hexanal	2	2	2	0	< 2	< 2	0	0
Benzaldehyde	4	3	4	29	2	2	2	0

890653-2-AB 3 3 of 4 Hbk/jle

	7	2 hrs	(3 days	;)	168 hrs (7 days)			
Chemical class/compound name	#1	#2	Mean	% diff	#1	#2	Mean	% diff
Ketones								
2-Pentanone, 4-hydroxy- (Toluene)	2	2	2	0	< 2	< 2	0	0
Halocarbons								
Chloroprene derivatives (Toluene)	4	4	4	0	3	3	3	0
Chloroprene derivatives (Toluene)	20	18	19	11	12	13	13	8
Chloroprene derivatives (Toluene)	14	12	13	15	9	10	10	11
Acids								
Acetic acid	12	< 2	6	>100	2	3	3	40
2-Ethylhexanoic acid	10	10	10	0	7	9	8	25
Esters								
Ethyl acetate	12	12	12	0	7	8	8	13
1-Methoxy-2-propyl acetate	2	< 2	1	>100	< 2	< 2	0	0
Benzoic acid, 4-ethoxy-, ethyl ester (Toluene)	8	7	8	13	6	6	6	0
Others								
Octamethylcyclotetrasiloxane (D4)	6	6	6	0	3	4	4	29
N,N-Dimethylbenzylamine	17	15	16	13	9	12	11	29
Decamethylcyclopentasiloxane (D5)	3	3	3	0	2	2	2	0
4-tert-Butylphenol (Toluene)	9	8	9	12	8	9	9	12
2,4,6-Tri-tert-butylphenol (Toluene)	15	12	14	22	12	12	12	0
Sums								
TVOC Toluene (ISO 16000-6)	949	849	899	11	603	650	627	8
Sum VOC (C6-C16)	513	457	485	12	267	301	284	12

* Single substances/volatile compounds were quantified with pure reference standards, and in some cases the substances shown in subscript were used for the quantification.

Not detected (< $1 \mu g/m^3$) < 1 Measured concentrations just above limit of quantification (LOQ) of $1 \mu g/m^2h$ will result in higher standard deviation from mean value.

Definitions according to ISO 16000-6:

VOC (C6-C16): Volatile organic compounds, between hexane (C6) and hexadecane (C16)

VVOC (<C6): Very volatile organic compounds, eluting before hexane, not included in TVOC

SVOC (>C16): Semi-volatile organic compounds, eluting after hexadecane, not included in TVOC

TVOC:

Total volatile organic compounds is the sum of all VOCs eluting between C6 and C16, quantified as toluene equivalents.

Report no.:	890653-2-AB
Appendix:	3
Page:	4 of 4
Initials:	Hbk/jle

Results from aldehyde analysis are shown in Table 2.

Method: ISO 16000-3: 2011. Indoor Air – Part 3: Determination of formaldehyde and other carbonyl compounds – Active sampling method.

Analysis of the air sampled on DNPH was performed at the Danish Technological Institute under DANAK accreditation number 90. Report no. 923787.

Table 2: Emission of lower aldehydes (C1-C4) by HPLC analysis (μ g/m³)

		72 hrs (3 days)				168 hrs (7 days)		
Compound name	#1	#2	Mean	% diff	#1	#2	Mean	% diff
Formaldehyde	< 2	< 2	< 2	0	< 2	< 2	< 2	0
Acetaldehyde	< 2	< 2	< 2	0	< 2	< 2	< 2	0
Propanal	-	< 2	< 2	> 100	-	-	-	0
Butanal	-	-	-	0	-	-	-	0
Arolein	-	-	-	0	-	-	-	0

Not detected. Limit of detection (LOD) is 0.5 μg/m³ (formaldehyde, acetaldehyde, butanal), 0.8 μg/m³ (propanal) and 3.3 μg/m³ (acrolein).
Measured concentrations just above limit of quantification (LOQ) of 1 μg/m²h will result in higher standard deviation from mean value

Report no.: Appendix: Page: Initials: 890653-2-AB 4 1 of 4 Hbk/jle

Estimated indoor air concentrations in a building

The tested furniture is seating, hence the measured concentrations from chamber testing must be adjusted to a standard office scenario using the default ventilation rate of per seating unit: $Q=24.8 \text{ m}^3/\text{h}$.

The concentration approach was applied for emission testing of the 2-seater sofa. Emissions correspond to 2 chairs (1-seaters), however the emissions were considered as "1 chair" in order to reflect worst case. Hence, calculations of building concentrations were carried out reflecting the worst-case emission scenario of seating in a building.

According to Table 11.1 (ANSI/BIFMA M7.1) the standard office environment parameter "modelled air flow (Q)" for seating is 24.8 m³/h for both open plan working stations and private office work stations.

The chamber ventilation rate was $Q_{chamber} = 12.4 \text{ m}^3/\text{h}$, hence the measured chamber concentrations ($C_{chamber}$) in Tables 1 and 2 must be multiplied by a factor:

 $Q_{chamber} = 12.4 \text{ m}^3/\text{h}$

 $Q_{bldg} = 24.8 \text{ m}^3/\text{h}$

 $C_{bldg} \times Q_{bldg} = C_{chamber} \times Q_{chamber}$

 $C_{bldg} = \frac{12.4 \text{ m3/h}}{24.8 \text{ m3/h}} \text{ x } C_{chamber} = 0.50 \text{ x } C_{chamber}$

Estimated building concentrations are shown in Tables 4 and 5.

The building concentrations after 14 days (336 h) were calculated from the emission factors after 3 days (72 h) and 7 days (168 h) by the power-of-law model according to the formulas given in ANSI/BIFMA M7.1 chapter 11.2.

The estimated building concentrations were calculated and results are shown in Tables 3 and 4.

Table 3: Estimated building concentrations C_{bldg} of volatile organic compounds (VOCs) between n-C6 and n-C16 measured by GC-MS ($\mu g/m^3$)*

Chemical class/compound name		7	14
Chemical class/compound name	days	days	days
Aromatic hydrocarbons	0.5	0.5	0.5
Toluene	2.0	1.0	0.6
m,p-Xylene (m-Xylene)	21.5	14.0	9.9
Styrene	1.5	0.5	0.2
o-Xylene (m-Xylene)	1.5	< 0.1	< 0.1
Alkylbenzene (Toluene)	3.3	1.8	1.1
Alkylbenzene (Toluene)	5.3	2.3	1.1
Alkylbenzene (Toluene)	6.0	3.3	2.0
Alkylbenzene (Toluene)	2.3	1.5	1.1
Alkylbenzene (Toluene)			
Aliphatic hydrocarbons	4.3	2.5	1.6
Cyclohexane	47.8	28.3	18.4
saturated aliphatic hydrocarbons C9-C16 (Toluene)	8.5	4.8	3.0
saturated aliphatic hydrocarbons C9-C16 (Toluene)	2.5	1.5	1.0
saturated aliphatic hydrocarbons C9-C16 (Toluene)	2.0	1.3	0.9
saturated aliphatic hydrocarbons C9-C16 (Toluene)	2.8	2.0	1.5
saturated aliphatic hydrocarbons C9-C16 (Toluene)	0.5	< 0.1	< 0.1
saturated aliphatic hydrocarbons C9-C16 (Toluene)	-	-	-
Cycloalkanes			
Terpenes	1.0	< 0.1	< 0.1

TVOC Toluene (ISO 16000-6)

Report no.: Appendix: Page: Initials:

890653-2-AB 2 of 4 Hbk/jle

242.5

142.0

91.7

4

alpha-Pinene	2.3	2.3	2.3
Terpene (Toluene)	2.5	1.8	1.3
Terpene (Toluene)	2.5	1.8	1.3
Longifolene			
Alcohols	58.8	27.5	14.8
Diacetone alcohol	-	-	-
Glycols/Glycol ethers			
Aldehydes	1.0	< 0.1	< 0.1
n-Hexanal	1.8	1.0	0.6
Benzaldehyde			
Ketones	1.0	< 0.1	< 0.1
2-Pentanone, 4-hydroxy- (Toluene)			
Halocarbons	2.0	1.5	1.2
Chloroprene derivatives (Toluene)	9.5	6.3	4.4
Chloroprene derivatives (Toluene)	6.5	4.8	3.7
Chloroprene derivatives (Toluene)			
Acids	3.0	1.3	0.6
Acetic acid	5.0	4.0	3.3
2-Ethylhexanoic acid			
Esters	6.0	3.8	2.6
Ethyl acetate	0.5	< 0.1	< 0.1
1-Methoxy-2-propyl acetate	3.8	3.0	2.5
Benzoic acid, 4-ethoxy-, ethyl ester (Toluene)			
Others	3.0	1.8	1.1
Octamethylcyclotetrasiloxane (D4)	8.0	5.3	3.7
N,N-Dimethylbenzylamine	1.5	1.0	0.7
Decamethylcyclopentasiloxane (D5)	4.3	4.3	4.3
4-tert-Butylphenol (Toluene)	6.8	6.0	6.0
2,4,6-Tri-tert-butylphenol (Toluene)			
Sums	332.0	195.8	127.1

Table 4: Estimated building concentrations C_{bldg} of lower aldehydes (C1-C4) by HPLC analysis (ppb)

Compound name	3 days	7 days	14 days
Formaldehyde	1.6	1.3	1.2
Acetaldehyde	0.8	0.7	0.6
Propanal	< 0.1	-	-
Butanal	-	-	-
Acrolein	-	-	-

According to ANSI/BIFMA M7.1 Table A1.1 and ANSI/BIFMA X7.1 Standard for Formaldehyde and TVOC Emissions from Low-emitting Office Furniture and Seating Table A1.1, the evaluation of indoor air concentrations from furniture in a building must meet the criteria limits for giving LEED EQ Credit 4.5 Low-Emitting Materials, Systems Furniture and Seating. The results are shown in Table 5.

Higher aldehydes analysed by GC-MS VOC analysis (Table 3) were converted to ppm and included in the sum of total aldehydes (Table 5).

Report no.:890Appendix:4Page:3 oInitials:Hbl

890653-2-AB 4 3 of 4 Hbk/jle

Table 5: Estimated building concentrations of tested furniture and limit of indoor airconcentrations after 7 days.

	Tested Seating C _{bldg}	Emissions Limits* Seating C _{bldg}
TVOC _(toluene) (mg/m ³)	0.20	≤ 0.25
Formaldehyde (ppb)	1.3	≤ 25
Total aldehydes (ppb)	2.2	≤ 50
4-Phenylcyclohexene (mg/m ³)	< 0.001	≤ 0.00325

* ANSI/BIFMA M7.1 Table A1.1.

The building concentrations are below the maximum allowable limit after 7 days, and hence is low emitting furniture and compliant with LEED v4 for interior design and construction.

The estimated building concentrations according to the above ANSI/BIFMA office furniture calculations of volatile compounds in air after 3, 7 and 14 days, respectively are shown Table 6 with reference to CDPH 01350 table 4-1, where the allowable concentration limit CREL (Chronic Reference Exposure Level) are stated for evaluation of the 14 days (336 hrs) building concentrations.

Note: CDPH01350 evaluation is only relevant for classroom furniture according to LEED v4.

Report no.: Appendix: Page: Initials: 890653-2-AB 4 4 of 4 Hbk/jle

Table 6: Estimated building concentrations of tested furniture at 3, 7 and 14 days of targetCREL VOCs from Proposition 65 and Table 4-1 in CDPH 01350*.

Compound Name	CAS No.	С(з d) (µg/m ³)	С_(7 d) (µg/m ³)	C(14 d) (μg/m ³)	Allowable C(14 d)** (µg/m ³)
Acetaldehyde	000075-07-0	1.5	1.2	1.0	70
Benzene	000071-43-2	-	-	-	1.5
Carbon disulfide	000075-15-0	-	-	-	400
Carbon tetrachloride	000056-23-5	-	-	-	20
Chlorobenzene	000108-90-7	-	-	-	500
Chloroform	000067-66-3	-	-	-	150
Dichlorobenzene (1.4-)	000106-46-7	-	-	-	400
Dichloroethylene (1.1)	000075-35-4	-	-	-	35
Dimethylformamide (N.N-)	000068-12-2	-	-	-	40
Dioxane (1.4-)	000123-91-1	-	-	-	1500
Epichlorohydrin	000106-89-8	-	-	-	1.5
Ethylbenzene	000100-41-4	-	-	-	1000
Ethylene glycol	000107-21-1	-	-	-	200
Ethylene glycol monoethyl ether	000110-80-5	-	-	-	35
Ethylene glycol monoethyl ether acetate	000111-15-9	-	-	-	150
Ethylene glycol monomethyl ether	000109-86-4	-	-	-	30
Ethylene glycol monomethyl ether acetate	000110-49-6	-	-	-	45
Formaldehyde	000050-00-0	2.0	1.7	1.4	9
Hexane (n-)	000110-54-3	-	-	-	3500
Isophorone	000078-59-1	-	-	-	1000
Isopropanol	000067-63-0	-	-	-	3500
Methyl chloroform	000071-55-6	-	-	-	500
Methylene chloride	001634-04-4	-	-	-	200
Methyl <i>t</i> -butyl ether	000075-09-2	-	-	-	4000
Naphthalene	000091-20-3	-	-	-	4.5
Phenol	000108-95-2	-	-	-	100
Propylene glycol monomethyl ether	000107-98-2	-	-	-	3500
Styrene	000100-42-5	21.5	14.0	9.9	450
Tetrachloroethylene	000127-18-4	-	-	-	17.5
Toluene	000108-88-3	0.5	0.5	0.5	150
Trichloroethylene	000079-01-6	-	-	-	300
Vinyl acetate	000108-05-4	-	-	-	100
Xylenes, technical mixture (o.m.p)	000106-42-3 000108-38-3 000095-47-6 001330-20-7	3.5	1.5	0.8	350
at datacted	179601-23-1				

- Not detected

*CDPH 01350 (2017) Standard method for the testing and evaluation of volatile organic chemical emissions from indoor sources using environmental chambers. Version 1.2.

**All maximum allowable concentrations are one-half the corresponding CREL adopted by Office of Environmental Health Hazard Assessment (OEHHA) agency of California Environmental Protection Agency (CalEPA).

Results from Table 6 show the building concentrations of target CREL VOCs are below the maximum allowable limit after 14 days.